
Operating System Issues for Petascale Systems
∗

Pete Beckman Kamil Iskra Kazutomo Yoshii Susan Coghlan
Argonne National Laboratory

Mathematics and Computer Science Division
9700 South Cass Avenue
Argonne, IL 60439, USA

{beckman, iskra, kazutomo, smc}@mcs.anl.gov

ABSTRACT
Petascale supercomputers will be available by 2008. The largest
machine of these complex leadership-class machines will prob-
ably have nearly 250K CPUs. These massively parallel systems
have a number of challenging operating system issues. In this
paper, we focus on the issues most important for the system
that will first breach the petaflop barrier: synchronization and
collective operations, parallel I/O, and fault tolerance.

Keywords
petascale, synchronicity, noise, parallel I/O, fault tolerance

1. INTRODUCTION
It is very hard to predict the future. Science fiction writers had
difficulty imagining a general-purpose computer. The utility
and pervasiveness of the Internet were also overlooked. Many
events that experts believed would be extraordinarily hard or
impossible, such as beating a human at a game of chess, have
turned out to be possible. Likewise, topics that seemed rel-
atively straightforward, such as autonomous vehicle piloting,
have proven quite challenging. The same is true for petaflop
computing.

In February 1994, a series of workshops began to explore how
petaflop computing might be reached. After this initial meet-
ing, interested researchers met yearly in Bodega Bay; those
sessions have been generally referred to as the Bodega Bay
Petaflops Workshops. At that time, the CM-5 from Thinking
Machines was dominant, occupying four of the top five slots in
the Top500 list [12], with the largest machine bragging 1024
CPUs. Cray vector machines, such as the Y-MP, also retained
honorable positions. However, imagining petaflop computing—
which was 10,000 times faster than machines of the day—was
daunting.

While many of the predictions from those petascale workshops
were indeed insightful, some of the most critical design issues
for petascale machines were overlooked. While participants
spent time imagining new computer languages, processing-in-
memory, architectures creation and management of one million
threads of control, and the future capabilities of such a mon-
strous machine, such as the reconstruction of DNA of extinct
species, they overlooked issues that have now become obvious,
such as electrical power.

∗This work was supported by the Mathematical, Information, and
Computational Sciences Division subprogram of the Office of Ad-
vanced Scientific Computing Research, Office of Science, U.S. De-
partment of Energy, under Contract W-31-109-Eng-38.

Power consumption is now a critical constraint for petascale
systems. The total monthly bill is one issue, but possibly more
important is how power and the required cooling affect den-
sity and floor space. There are practical limits to the size of a
machine room.

Of course, with petascale machines now only two to three years
from delivery, we have a tremendous advantage over the par-
ticipants of the Bodega Bay workshops. The important issues
are in clear focus. The most significant issues for petascale op-
erating systems are synchronization, parallel I/O, and fault tol-
erance.

The remainder of this paper is organized as follows. A short in-
troduction into petascale architectures and operating systems is
provided in Section 2. Section 3 discusses how synchronization
affects operating system design. The challenges of I/O are the
topic of Section 4. Section 5 examines fault tolerance for peta-
scale machines. Section 6 provides the conclusions and dis-
cusses the next step for petascale systems.

2. PETASCALE ARCHITECTURES
Three architectures seem likely to achieve petaflop speeds over
the next five years. While architecturally distinct, from an op-
erating system (OS) point of view they are actually quite sim-
ilar. First are the commodity scale-ups. These machines use
what are essentially commodity servers packaged, with vary-
ing levels of integration, with a high-speed interconnect. They
are represented in the Top500 list as commodity Linux clus-
ters, IBM JS20 Cluster, Dell PowerEdge Cluster, or Itanium2
Tiger4 Cluster. The largest of these machines has about 12,000
CPUs. Many are SMPs. To reach a petaflop, these architectures
must get about 12 times faster, a feat likely with just one size
doubling combined with the availability of four- and eight-core
CPUs. Therefore, for this architecture we anticipate from 1,000
to 10,000 contexts, depending on the size of SMP node. The
most common range will be 4- to 16-way SMP.

The most likely candidate for being the world’s first petascale
machine will be IBM’s BG/P, the followup to the successful
BG/L [9] architecture, and current Top500 leader. The BG/L at
Lawrence Livermore National Laboratory (LLNL) is the fastest
machine on the planet by a factor of almost 4.4 from its nearest
architectural rival, a commodity scale-up. BG/L is really quite
different in several important aspects. No part of the BG/L is
sold as a departmental server, nor would it be successful as
one. Its abilities stem only from its unprecedented scale. With
131,072 CPUs, it is 16 times bigger than the largest commod-

ity Linux cluster. Combining low-power (both electrically and
computationally) with a tightly integrated high-speed intercon-
nect, the LLNL BG/L has a peak theoretic speed of 367 TF and
can deliver 280 TF on LINPACK [2]. The largest BG/P will
more than double the CPU count and increase clock speeds and
network links. Nodes will be 4-way SMP with cache-coherent
memory. With approximately 70,000 contexts, the largest BG/P
will stress the limits of the OS architecture.

The third type of possible petascale architectures is actually
a subspecies of the commodity scale-up. Custom accelerators
such as GRAPE and ClearSpeed can turn a commodity Linux
platform into a petascale system. From an OS perspective, how-
ever, these machines are largely the same as their more vanilla
counterparts. They simply have a special-purpose subroutine
processor. Still, these architectures should not be underesti-
mated: after all, GRAPE-4 [4] was the first system to break
the teraflop barrier back in 1995. Vector machines fall into a
similar regime from the OS perspective, looking a lot like a
cluster with special floating-point capabilities.

From the OS, these three classes of architecture, all capable
of achieving petaflop performance in the next five years, are
similar. They handle the basic run-time system for the appli-
cation, interface to the low-level messaging system, pass I/O
back to the file system, and manage process startup and shut-
down. Therefore, they must all address the same OS issues for
petascale computation: synchronization effects, I/O challenges,
and fault tolerance.

3. SYNCHRONICITY
Synchronicity is a fundamental requirement for many programs
that use the Single Program Multiple Data (SPMD) program-
ming model such as MPI. These programs often coordinate
global activities with barriers or global reductions. Most often,
the program runs as slow as the slowest processor. Therefore,
small delays in processing, or “detours,” can cause a node to
arrive at a global synchronization point late, forcing the en-
tire synchronization to be delayed. Even if long detours are un-
likely for any given node, the size of a petascale system makes
this a critical issue.

What are the sources of these delays, or “noise,” as some re-
searchers call it? Some come from the hardware itself. For ex-
ample, clock skew on a large machine can affect communica-
tion links and influence parallel performance. At least one mas-
sively parallel architecture employs special hardware mecha-
nisms to synchronize the machine, such as a single clock gen-
erator to drive the whole system, including network hardware
at each node. On the other hand, each compute node on a com-
modity Linux cluster is driven by an individual clock generator,
or even multiple clocks, one for each piece of hardware. This is
a fundamental difference in design between a commodity clus-
ter and a massively parallel machine. But even if the hardware
is fully synchronized, software is usually the greatest source of
detours and can therefore have a tremendous impact on parallel
performance.

A typical OS such as Linux is designed for multiuser multi-
tasking. It has quick response even under high load. The coders
working on Linux are motivated to tune for responsiveness of
the user interfaces. This design goal is actually a disadvantage
and a source of overhead for computational usage.

For example, a typical OS tends to use small-size pages (such
as 4 KB or 8 KB) for efficient memory use. During code ex-
ecution, a CPU must translate a virtual address to a physical
one for every memory access. Unfortunately, this is an expen-
sive operation. To speed it, CPUs have a translation lookaside
buffer (TLB). On most CPUs this buffer is fairly limited in
size. A memory access is ten or more times slower when the
TLB does not have the virtual to physical mapping handy. This
buffer “miss” is costly; the mapping must be looked up outside
the CPU. Thus, small-size pages slow applications that sweep
big areas of memory. Unfortunately, this is exactly the behav-
ior of many scientific applications that walk through large data
structures. Because of differences in data decomposition and
layout on a massively parallel machine, TLB miss rates may
also differ across the machine. This situation can significantly
affect synchronicity. To mitigate this, many compute node ker-
nels use extremely large pages for user applications. If all the
pages associated with an application can be mapped into the
TLB, there will be no misses and hence no loss of synchro-
nization.

A typical OS is designed for quick response; nearly any opera-
tion can be preempted. Since every process pollutes or modifies
the cache in a different way, the harm caused by running other
tasks is more than just the total time stolen from the applica-
tion: it can also cause increased cache misses. Once again, the
synchronization across the machine can be changed as some
nodes load their operands from cache and some from main
memory. A compute OS needs to reduce the number of cache
polluters. Controlling the behavior of processes with special
MMU settings is one method for addressing this problem.

Table 1 shows some examples of preemptive detours during
a computation. The data is measured by a benchmark called
Selfish, which measures all cycles not given to the application.
Those cycles may have been used to process interrupts or pro-
cesses such as the cron daemon. The table provides the ratio of
the OS detour to the total CPU time and the maximum duration
of a single detour.

In the table, the BG/L compute node (CN) is running BLRTS,
a lightweight kernel developed by IBM, optimized for compu-
tation. The BG/L I/O node (ION) has exactly the same CPU
hardware as the BG/L CN; however, the I/O nodes run a highly
tuned Linux. Jazz is a standard commodity x86 Linux cluster
with a relatively untuned Linux kernel.

From the table, one can see that BLRTS has almost no sources
of delay to the benchmark application. Very few cycles are lost
to other handlers. Interesting, the tuned Linux kernel running
on the BG/L I/O nodes is also relatively quiet. The detours
present on Jazz, however, are stark. Careful tuning of the Linux
kernel can have a dramatic effect on the detours and therefore
the loss of synchronization across a petascale system.

Table 1: Operating System Detour (Noise).

Node CPU OS Ratio Max [µs]

BGL CN PPC (700 MHz) BLRTS 3.2e–07 1.8
BGL ION PPC (700 MHz) Linux 2.0e–04 10

Jazz Xeon (2 GHz) Linux 1.2e–03 110

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0 200 400 600 800 1000

D
e

to
u

r
[s

e
c
]

Rank

BG/L I/O nodes

Figure 1: Detours on a BG/L I/O node.

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0 200 400 600 800 1000

D
e
to

u
r

[s
e
c
]

Rank

JAZZ nodes

Figure 2: Detours on a Jazz node.

Figures 1 and 2 provide graphical representation of the detour
results (detour samples are sorted by detour time) from a BG/L
ION and a Jazz node, respectively. On both graphs, base ac-
tivities come from timer updates. Although the application is
interrupted at a relatively high rate, every 10 ms, this is not a
big issue because the interval is fixed, so such interrupts are
relatively easy to synchronize. The spikes close to the right
edge of the graph are far more dangerous because they come
from asynchronous detours. On a petascale system, even with
the probability of such long delays being exceedingly small for
each individual processor, such a detour would likely be the
source of a delay for each global operation. In this case, for a
petascale machine using the Jazz Linux kernel, every barrier
would be at least 110 µs. Of course, zero interruption is ideal
for parallel applications. In practice, however, if an application
needs full operating system services, such as support for mul-
tiple processes or dynamically loaded libraries, the OS must
support multitasking. Reducing OS interference and the maxi-
mum detour times is essential for petascale machines.

The current design of compute node operating systems is based
on an idea that cuts or minimizes OS interference with parallel
application. In that sense, there may be little room for further
improvement. However, current compute node operating sys-
tems, being so lightweight and independent, have a tendency
to perform redundant work. Such redundancy might be seen as
part of the SPMD paradigm, but there is no reason why the op-

erating system should not try to optimize it. For example, most
of the time, there is no need to perform file open operations
independently from each of the thousands of compute nodes.
In order to avoid such situations, global resource management
is required—a design that we hope to see in future operating
systems.

A number of studies on OS noise or interference have been re-
ported. Petrini et al. [6] discovered the source of performance
problems on a supercomputer related to unrequired processes
and tasks stealing cycles from the application. They developed
a methodology to determine which sources of noise impact the
performance and how to eliminate them. With their methodol-
ogy, they improved the performance of the ASCI Q machine.
Jones et al. [3] obtained a factor of 3 improvement in the ex-
ecution times of collectives such as allreduce by adding par-
allel awareness to the operating system, consisting primarily
of coscheduling parallel processes across the whole machine.
Agarwal et al. [1] provided an initial theoretical study into the
problem of the impact of noise on the scaling of collectives.
They found that exponential noise is not much of a problem
but heavy-tailed or Bernoulli noise can drastically reduce the
performance. All of these studies show that the core issue is
synchronicity of operating systems for petascale machines.

4. PETASCALE I/O
Data input/output can be a considerable problem on petascale
machines. Stripped-down kernels running on compute nodes
are ill-equipped to handle it. From the perspective of the stor-
age server, handling I/O from 10K to 100K individual com-
pute nodes would be daunting. Therefore, file I/O is typically
offloaded onto dedicated I/O nodes, acting as “client reduc-
ers.” As a trivial example, imagine a 100K machine in which
all processors try to open a file for reading. The resulting file
system storm would probably swamp any single-interface stor-
age server. Furthermore, without intelligent file system seman-
tics, 100K copies of exactly the same file could be pushed
through the network. Parallel supercomputers must be paired
with parallel storage servers, and I/O nodes must perform the
impedance matching.

The amount of data that can be generated by a petascale ma-
chine is staggering. Consider the 64K-node BG/L machine at
LLNL. Each of these nodes can put data on the collective net-
work, used for communication with I/O nodes, at 2.5 Gbit/s.
For the whole machine, that would result in 20 TB/s of aggre-
gate I/O. If the internal communication network and backend
file system could support these amazing rates, the entire 32 TB
system could be checkpointed in about 2 seconds. However,
supporting such an internal network is cost prohibitive. Natu-
rally, compromises have to be made. There is but one I/O node
for 64 compute nodes, decreasing the throughput by that factor.
Moreover, each I/O node has a Gigabit Ethernet interface, ca-
pable of at most 100 MB/s. So in total, the I/O capability of the
entire system is 100 GB/s, assuming perfect scalability within
the Ethernet infrastructure.

It takes a large Ethernet switch to handle Gigabit traffic from
1024 I/O nodes. For BG/L machines, the ratio of 64 compute
nodes to I/O nodes is considered to be I/O poor. Much richer
configurations, up to 8 compute nodes per I/O node, are pos-
sible. However, no single switch currently on the market has
8192 Gigabit Ethernet ports, so such configurations are fully

usable only on smaller-scale machines.

Obviously, no single fileserver can currently handle data in-
put in the range of 100 GB/s. Thus, file I/O must be paral-
lelized. One could imagine a set of independent NFS-based
fileservers handling the task. However, access to such scat-
tered data would be rather inconvenient. Further, NFS was not
designed for highly parallel access. Our experiences indicate
that just a few dozen not particularly persistent parallel writers
make an NFS filesystem unusable for interactive work by other
users. A larger number of more aggressive writers will bring it
to its knees.

A dedicated parallel filesystem has become a standard com-
ponent for leadership-class architectures. It provides its users
with a single directory tree, while internally storing the data
on multiple fileservers. There are two schools of thought re-
garding the interface that a parallel filesystem should provide.
A widespread view is that a POSIX-compliant interface should
be provided, since that is what most users are familiar with.
GPFS [7] and Lustre [10] are two examples of this approach.
We do not share this view. POSIX consistency semantics might
be appropriate for a mail server and many single clients access-
ing their respective mailboxes, but such semantics simply are
not suitable for a parallel application. Strict POSIX compliance
requires locking, increasing overhead and reducing the level
of concurrency. The last thing that a petascale infrastructure
should do is to trade performance for compliance to a standard
irrelevant to its primary use. Further, POSIX cannot effectively
describe noncontiguous I/O, which is fairly common in sci-
entific applications. An alternative, the PVFS2 filesystem [11]
does provide a POSIX-style interface to allow access using fa-
miliar UNIX tools, but it is not strictly compliant, and parallel
applications are expected to take advantage of its native inter-
face (directly or through, e.g., MPI-IO) for maximum perfor-
mance and flexibility.

We point out that using to full advantage a third-party prod-
uct such as PVFS2 turns out to be surprisingly difficult on a
machine like BG/L, primarily because of its stripped-down,
closed-source kernel. While we agree that it is a good idea to
have a stripped-down kernel, we feel that (paraphrasing from
Einstein) the kernel should be made as simple as possible, but
no simpler. The BG/L kernel is so stripped down that it does not
provide useful interfaces for shipping user data between com-
pute nodes and I/O nodes, an extremely vital data path and one
that is at the heart of operating system research for petascale
platforms.

I/O nodes bridge two worlds, the realm of the compute nodes
and the domain of the large parallel file system. For petascale
architectures, this OS component is unique and requires special
consideration and design. Lightweight compute nodes rely on
the I/O nodes to handle file I/O. Should a large parallel com-
putation want to call on a dynamically loaded library, compute
nodes could generate an I/O function call storm, all of which
would be simply to load the same library. The compute node
and the I/O node must be carefully paired and matched. This
symbiotic relationship makes the I/O node critical for peta-
scale systems. Our current algorithms and techniques for col-
lective operating system calls and impedance matching the I/O
capabilities of the compute nodes to the parallel I/O system
are primitive at best. Current experience suggests that even the

simplest of I/O operations, performed by all compute nodes,
can cause tremendous bottlenecks.

We anticipate that much research and development will be re-
quired to prevent I/O nodes and their paired compute nodes
from creating what will essentially be denial-of-service attacks
on the parallel file system. New caching strategies, collective
I/O calls, and automatic I/O reductions and broadcasts must be
added to I/O nodes for petascale machines to achieve scalabil-
ity.

5. FAULT TOLERANCE
Leadership-class platforms are complex hierarchical systems.
Machines such as IBM’s Blue Gene and Cray’s XT3 [8] are
designed and built with impressive hardware fault detection
and recovery mechanisms. If a chip overheats, it is automat-
ically turned off. If a network link gets CRC errors, an alert
is raised. A redundant power supply can automatically switch
on when another fails. At extreme scale, however, two prob-
lems need special attention. First, not every component in these
petascale architectures has sophisticated error detection or cor-
rection hardware. While memory often has additional fault de-
tection, caches within the CPU as well as some data paths do
not. Given common rates for modern CPUs of around one soft
error per 25 years [5], a petascale machine with 72,000 cores
might be expected to fail every 3.5 hours. Indeed, many of the
largest supercomputers have endured significant problems as-
sociated with soft errors. Second, most large parallel applica-
tions have no real fault strategy: when one processor dies, the
entire job aborts. Within the system software, operating system,
middleware, and user code, very little work has been done to
dynamically respond to fault detection for HPC systems. Peta-
scale machines must address faults throughout the system—
not only inside the hardware, but from the OS software all the
way up to the application. We believe that two areas need en-
hanced capabilities within extreme-scale architectures: self de-
tection/correction and virtual processors.

It is relatively easy for hardware, when faulty, to signal the
OS. A fan that rotates too slowly, a checksum error on a link,
or a disk timeout all trigger corrective actions within the OS.
However, given the sheer number of unprotected registers and
caches in a petascale system, the system must become smarter.
Soft errors, or “upsets” that are an integral part of our current
chip technology cannot cause catastrophic failures. The system
must detect errors even when no hardware faults are signaled.

To do this, we need to adjust the OS strategy. On the Inter-
net, buffer overflow attacks have finally caused programmers
to actually check array bounds and buffer overrun conditions.
Likewise, the crash of one component in a browser, such as
the Acrobat Reader or the Flash Player, should not cause the
entire browser—or worse yet, the entire machine—to falter.
For petascale operating systems, we must take a similar tack
and enhance our programming styles. Every single error code
must be checked. Correctness validations must be built into
OS routines. Additional checksums and state information must
be saved. Much like a journaling file system, the OS must be
able to recover from lost processes or subroutines. The OS
must detect soft errors—not via a hardware interrupt, but from
the internal consistency checks in the kernel. Why is such er-
ror checking so critical? Without more careful error checking
in the OS, the application could continue for hours, or pos-

sibly days, with corrupt data. Sadly, many applications rarely
check for internal data corruption. The OS could identify prob-
lems and raise red flags for the application, potentially sav-
ing many thousands of CPU hours. Petascale operating sys-
tems must carefully add internal consistency checks to provide
a productive work environment to scientists.

Also important is how the petascale OS coordinates its fault re-
sponse with other parts of the system. The most common and
robust method for providing fault tolerance in scientific appli-
cations is the checkpoint/restart (CPR). Either user-initiated or
system-initiated, a checkpoint writes out the important data re-
quired to restart the computation, either to additional memory
on a different node or to a disk. User-level checkpoints have the
distinct advantage of knowing the minimum amount of data re-
quired for a restart. System-level checkpoints are usually brute
force, saving all of the user data as well as large swaths of OS
memory associated with the process or its message buffers. Un-
fortunately, the layers upon layers of middleware and run-time
software linked to the application make hiding a CPR event
very difficult. Common practice is to stop all computation, re-
build all MPI communicators, back up to the last checkpoint,
and resume computation. Several global synchronizations are
required.

A better strategy for petascale operating systems is to virtual-
ize the processor and the interfaces, allowing another processor
or system node to temporarily host two virtual nodes. The CPR
image would be restarted on the CPU that was most idle during
the previous timesteps, or simply not used at the time. Then,
the application could be notified and corrective action taken.
For applications with no fault handling, the application would
simply run slightly slower, with warning messages sent to the
user’s application console. Applications with fault awareness
could be asked if they want to redistribute data, reducing the
workload from the two nodes sharing a physical resource by
half or more. In this way, faults could be handled more grace-
fully, causing global communication only should the applica-
tion request that behavior—MPI communicators and all other
internal functions would continue normal operation. In order
to accomplish this, petascale operating systems must not only
support CPR but also virtualize the communication interfaces
so that, should memory be available, nodes can temporarily ser-
vice two OS stacks.

6. CONCLUSIONS
There are no looming showstoppers for petascale computing.
There are, however, several key issues for the OS components
within petaflop computers, with the most significant of these
being synchronicity. While it has been argued that special-pur-
pose OS kernels are required for petascale operating systems,
we do not believe that to be the case. Addressing synchronic-
ity is straightforward. By focusing first on trimming a kernel
such as Linux down, and reducing the latency and overhead of
interrupts and frequency of timer interrupts, overall effects of
drifting CPUs can be reduced to a handful of microseconds.
More advanced techniques, taken from real-time OSes, could
reduce OS drift even more. Using a global clock to synchronize
timer interrupts or using a tick-less configuration for the kernel
can provide even higher levels of synchronization. For the near
future, these techniques should help systems scale to petaflop
levels without difficulty.

Addressing the fault tolerance and I/O needs of petascale sys-
tems will be an ongoing issue that will last years. Since the cur-
rent capabilities of I/O nodes in leadership-class architectures
are still primitive and software fault tolerance is practically
nonexistent within the OS, significant investment in research
and development will be needed to achieve high-productivity
machines in the presence of faults. We are encouraged to hear
that Japan has recently started a new research program to build
a 10-petaflop system. Such large-scale national projects can
help catalyze independent research teams and build a stable
forum for development. We believe a similar program in the
United States could augment the research being done at all lev-
els, from academia to the national labs and corporations.

7. REFERENCES
[1] S. Agarwal, R. Garg, and N. K. Vishnoi. The impact of

noise on the scaling of collectives: A theoretical
approach. In Proceedings of the 12th International
Conference on High Performance Computing, volume
3769 of Springer Lecture Notes in Computer Science,
pages 280–289, Goa, India, Dec. 2005.

[2] J. J. Dongarra and G. W. Stewart. LINPACK—A
package for solving linear systems. In W. R. Cowell,
editor, Sources and Development of Mathematical
Software, Prentice-Hall Series in Computational
Mathematics, Cleve Moler, advisor, pages 20–48.
Prentice-Hall, Englewood Cliffs, NJ, 1984.

[3] T. Jones, S. Dawson, R. Neely, W. Tuel, L. Brenner,
J. Fier, R. Blackmore, P. Caffrey, B. Maskell,
P. Tomlinson, and M. Roberts. Improving the scalability
of parallel jobs by adding parallel awareness to the
operating system. In Proceedings of the ACM/IEEE
Conference on Supercomputing, Phoenix, AZ, Nov.
2003.

[4] J. Makino, M. Taiji, T. Ebisuzaki, and D. Sugimoto.
GRAPE-4: A one-Tflops special-purpose computer for
astrophysical N-body problem. In Proceedings of the
ACM/IEEE Conference on Supercomputing, pages
429–438, Nov. 1994.

[5] S. S. Mukherjee, J. Emer, and S. K. Reinhardt. The soft
error problem: An architectural perspective. In
Proceedings of the 11th International Conference on
High-Performance Computer Architecture, pages
243–247, San Francisco, CA, Feb. 2005.

[6] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of the
missing supercomputer performance: Achieving optimal
performance on the 8,192 processors of ASCI Q. In
Proceedings of the ACM/IEEE Conference on
Supercomputing, Phoenix, AZ, Nov. 2003.

[7] F. B. Schmuck and R. L. Haskin. GPFS: A shared-disk
file system for large computing clusters. In Proceedings
of the Conference on File and Storage Technologies,
pages 231–244, Monterey, CA, Jan. 2002.

[8] http://www.cray.com/products/xt3/.

[9] http://www.research.ibm.com/bluegene/.

[10] http://www.lustre.org/.

[11] http://www.pvfs.org/pvfs2/.

[12] http://www.top500.org/.

